Synergia simulations of Booster beams # Loss is dependent on the input beam distribution #### **Gaussian beams?** What is the meaning of the rms given by the measurements? Is it the rms of the distribution or it is the sigma of the Gaussian fit? Cutting the tails: $$\rho(z,z_p) = \rho(J,\Phi) = \begin{cases} e^{-J/\epsilon} & J \leq J_c \\ 0 & J > J_c \end{cases}$$ $$\rho(z) = e^{-z^2/2\sigma^2} erf(\sqrt{J_c - z^2})$$ Gaussian fit zrms=1.2 m zrms=0.83 m 1000 200 0.004 0.002 0.002 0.002 0.004 0.002 0.002 0.004 0.002 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 1 order match δp/p larger 7 order match #### 1 order match **Input distribution** **Turn 500** #### 7 order match for the ideal lattice **Input distribution** **Turn 1000** # Comparison ideal lattice with ideal+dogs lattice # ideal+dog loss **Turn 1900** $$Q_x = 0.7730$$ #### **Resonance:** $$3Q_{s}(J_{z})+Q_{x}=1$$ #### Tune density of the lost particles The resonance $3Q_s+Q_x=1$ has no effect when spc is present ### **HEP lattice** 7 order beam matching not possible for the desired longitudinal distribution Horizontal profile, 5 order matching Reason for failure: resonance Q_x - Q_s =0.6666 (3 Q_x -3 Q_s =n) for the particles with large z - Longitudinal-horizontal coupling resonances important for the non interacting beam dynamics - Due to the resonances is not always possible to find a match beam - Since these resonances (probably) are not so important when the space charge effects are considered, I proceed by using as input the ideal lattice match beam - Should the skew quads and the skew sextupoles be turned on in the simulations? # **Larger chromaticity**, larger beam loss - Enhanced spectral weight at $Q_x=Q_y=0.6666$ - Loss at vertical apertures Tunes on the coupling line, $Q_x = Q_y$, favors loss? Tunes on the coupling line, $Q_x = Q_y$, favors loss? ## **Larger chromaticity**, larger beam loss **Larger loss** - Dog magnets have a small effect on beam loss. They seem to decrease the loss. - Chromaticity has a large influence on beam loss. - The beam loss is larger wen the tune footprint is on the coupling resonance line $\mathbf{Q}_{\mathbf{x}} = \mathbf{Q}_{\mathbf{y}}$ - No evidence that half integer resonance is important for beam loss - Is the third integer resonance line Q_y =0.666, or is the multiple resonance point Q_x = Q_v =0.666 relevant for beam loss?